
Naval Research Laboratory
Washington, DC 20375.5000

AD-A242 822 NL Report 935

Principles of Interpolator
Design and Evaluation

ALAN SCHAUM

Advanced Concepts Branch
Optical Sciences Division

November 15, 1991

SNV2 6 199i1

91-16428

Approved for public release; distribution unlimited.



Form ApprovedREPORT DOCUMENTATION PAGE OM No. 0704-0188

Public reorting burden for this collection of information is estimated to average I hour per response, including the timne for reiewing Intuctions. searching teiting data sources.
gathering and maintaining the data neaded. and completing and revieing the collection Of information, Send comments regad th I brden estimate or ansi othaspect of this
collection of information. including suggestions for reducing this burden. to Washington Headquarters Services. DireCorat1eo rt informatmn Operations and Reports, 2 IS Jkeffeon
Davis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Projet(0704-01). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 15, 1991 Interim

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Principles of Interpolator Design and Evaluation PE-62111 N
PR-RAl11 W52 0W0

6. AUTHOR(S)

Alan P. Schaum

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5000 NRL Report 9356

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Naval Technology
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

It is shown that an error spectrum can be used to describe the performance of any convolutional inter-
polator operating on equally spaced points from an oversampled image. The error spectrum is linear in the
image power spectrum and in an error factor that depends on only the interpolator and the distance from the
sample points. The same form is shown to describe the interpolation of undersampled data, in an average
sense. Simple forms are given for the error factor in either Fourier or real space, and standard interpolators
are evaluated with them. Optimal interpolators are derived for various model image spectra: constant,
Lorentzian, power law, and Gaussian. Practical methods of interpolator design are devised for use with
image spectra that are known only partially or are not easily characterized analytically.

14. SUBJECT TERMS 15. NUMBER OF PAGES
45

Interpolation, Resampling, Frame differencing, Digital subtraction 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
PrescrT by ANSI Std 139-18
298-102



CONTENTS

1. INTRODUCTION AND BACKGROUND ................................................................ 1

2. STANDARD INTERPOLATORS ........................................................................... 3

3. THE STANDARD DESCRIPTION OF INTERPOLATORS .......................................... 5

4. DERIVATION OF THE ERROR FORMULA ........................................................... 8

5. RELATION TO PRIOR W ORK ............................................................................ 13

6. PERFORMANCE EVALUATIONS ........................................................................ 14

7. OPTIMAL INTERPOLATORS ............................................................................. 17

8. BEYOND INTERPOLATION .............................................................................. 35

9. SUMMARY .................................................................................................... 36

REFERENCES .................................................................................................... 38

APPENDIX - Derivation of the Comb Transform ........................................................ 41

Accession For

NTIS

'' l I Ax-u 1:'b Il t.v 'cedes

Ill

D Tii



PRINCIPLES OF INTERPOLATOR
DESIGN AND EVALUATION

1. INTRODUCTION AND BACKGROUND

This report develops a general mathematical method for evaluating and optimizing any local
interpolator that operates on equally spaced sample points. The performance metric is total squared error,
for which a formula is derived that depends only on the underlying signal power spectrum, the
interpolator tap weights, and the shift of the interpolation points. The method is used to evaluate standard
interpolators, and it reveals previously unknown properties. For example: some interpolators perform
better at large shifts than at small; also, the much maligned truncated SINC functions perform almost
flawlessly at certain frequencies and are, furthermore, optimal for flat inband signal spectra.

The error formula also allows the design of interpolators that are optimal in a variety of contexts,
examples of which are presented. These include perfect reproduction of selected frequencies;
low-frequency optimum; hybrid combinations; and absolute error minimization for selected spectra.

An important application of interpolation is in the registration of image pairs, a process that is usually
implemented in two steps. The first is the estimation of the relative shift or local distortion. Scene-based
algorithms for this step have been developed [1] that can be accurate to better than one hundredth of a
sample, depending on image statistics. Greater accuracy can be provided in some applications by direct
measurement of the displacement. Residual registration error after using these displacement estimates is
often dominated by inaccuracy in the second component of registration, the resampling of one of the
images, which is interpolation at a discrete set of shifted points.

For remote sensing applications, registration "plays a crucial role in the correction of raw satellite
image data" [2] collected by multiple sensors or at different times. The importance of algorithmic
methods of image alignment then lies in the relaxation of optical/mechanical alignment tolerances [3],
which is a vital cost/risk factor for satellite-based systems.

"In medical imaging, applications involving image registration are expanding rapidly: ... computed
tomography, single-photon-emission computed tomography, positron-emission tomography, magnetic
resonance imaging, nuclear medicine, ultrasound, and thermography" [4]. In digital subtraction
angiography, images are compared before and after injection of X-ray absorbing elements, and patient
or organ motion causes relative translation and rotation between successive images, which then require
registration and resampling for comparison [5]. Improvements in the quality of such images can allow
"reduction of injected contrast agents or X-ray doses" [6]. Here the term "resampling" means
interpolation at points located at a fixed shift s from neighboring samples, rather than at the continuum
of such points. This disiinction is maintained in the analysis that begins in Section 2.

Manuscript approved August 7, 1991.
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The detection of changes in a pair of images is also the basis for monitoring geologic, agricultural,
and oceanic evolution in ecological and planetary studies. In military applications, autonomous
surveillance and search and track systems often base the detection of moving targets on digital background
subtraction followed by thresholding. The accuracy of all the above applications ultimately can hinge on
the fidelity of the interpolator.

Interpolation is also required for general-purpose digital image processing, for motion generation,
to scale images for display purposes, and to correct for slant aspects. It also has many traditional signal
processing applications: speech processing, frequency multiplexing of single sideband systems, digital
beamforming [7], time delay estimation, and data compression.

Progress in interpolator design can be traced to the former use of a suboptimal polynomial
interpolator called Cubic Convolution [8] to reconstruct Landsat digital imagery [9]. This method was
shown [10] to be a special instance of a class of four-point interpolators that was named Parametric Cubic
Convolution (PCC), and the optimal value of the relevant parameter ct was found to differ from that in
popular use. The meaning of optimality depends on context. In Ref. 10, values of ct were found that
minimized a particular error measure:

(a) in an image-independent sense, and
(b) "absolutely," for an arbitrary but known power spectrum of the signal to be resampled.

For (a), image energy was assumed to be concentrated at low spatial frequencies. All members of
PCC have perfect dc (t = 0) responses, and ce was selected to enhance this low-frequency behavior by
requiring the error measure to be a maximally flat function of frequency near dc. This low-frequency
optimal choice of parameter value (ce = -1/2) supplanted the original choice (ca = -1), and eventually
the name Cubic Convolution (CC) came to refer to PCC with the new choice of a. Here, we a, o use
CC to mean PCC with ce = -1/2.

The error measure used in Ref. 10 is shown in Section 5 to be an average resampling error over all
possible shifts of the resampling point. This is a reasonable measure for the interpoiation problem, i.e.,
the construction of a dense set of resampled points. However, here we show how to find and minimize
the error for any given value of the shift s, which is the distance of the resampled points from the nearest
samples. We show further that the minimum-error four-point resampler in the se-.se of (a) above is indeed
a cubic convolution, but it is not a member of PCC.

The function defined on the continuum by resampling an arbitrar' signal at all shifts is called the
interpolated function. The class of PCC interpolators was defined in rdrt by constraining the interpolated
function's values and first derivatives to be continuous. The imagery resulting from use of PCC to
construct a continuum of resampled points has no steps or kinks. The interpolation function is smooth
in the mathematical sense. Because of these constraints and the limited class of cubic interpolators allowed
by even the full range of values of a, PCC is actually or!y a subclass of interpolators: Smooth Cubic
Convolutions.

The optimal solution in the image-independent sense, above, for any fixed number N of sampling
points is here called LF-N, for Low-Frequency optimal. The LF-N solutions generally can produce
discontinuous first derivatives in interpolated imagery; when N is odd the functional values may be
discontinuous as well. LF-N is smooth only in the limit N - 00.

When optimized in the absolute sense, PCC results in spectrum-dependent values of a, but the result
is, of course, always a cubic interpolator. However, the absolutely optimal, i.e., minimum error, solution
is not a polynomial type; this is described later.

2
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2. STANDARD INTERPOLATORS

Here the philosophy of Parker et al. [5] and others is adopted, in which resampling is treated as a
two-step process (Fig. 1):

* interpolation to form a function defined on the continuum, followed by
* sarnpling the new function at whatever shift s is desired.

f(n -1) f(n)

(a) (b)

3+ S f (nns)fi x ) f ,~ n 1n S)s

I I I I l I
I I I I I I

(c) (d)

Fig. 1 - (a) Discrete set of sampled values from a continuous image; (b) interpolation, based on the sampled values,
forming a continuous image; (c) sampling the interpolated image at a shift s to form: (d) a new set of resampled values

Lettingfix) represent the underlying image intensity at position x, the sampled values off, fin) (n an
integer), are used to produce an interpolation estimatef off

f1(x) = _ r(x - n)f(n). (1)
n

The kernel r defines the method of interpolation. The treatment here is in one dimension.
Two-dimensional interpolation can be accomplished by a sequence of two one-dimensional operations.

Because the sampling grid is defined here to have unit spacing, the Nyquist frequency is PNyq = 1/2
cycles/sample. If the Fourier transform of f has no components with frequency v 1/2, f is called
"oversampled." According to the Nyquist Reconstruction Theorem, the kernel

r(x) = SINC (x) w sin (Trx) (2)
ITX

may be used in Eq. (1) to reproducef exactly, that isfi = f, wheneverf is oversampled.

In practice, r must be of finite support (the range of x over which r is nonzero) to make Eq. (1)
contain only a finite number of terms. For example, the SINC function may be truncated at +N/2. We
call such an interpolator SINC-N. Two other common interpolators are nearest neighbor (NN) and linear
(LIN). Figure 2 illustrates r(x) for NN, LIN, and SINC. The supports for NN and LIN are 1 and 2,
respectively. The SINC has infinite support, but when truncated at ±N/2 to SINC-N, its support becomes
N. Table 1 lists the corresponding analytic forms for r.

3
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Fig. 2 - Interpolation kernels for Nearest Neighbor, Linear, DFT-4,
and SINC, with supports 1, 2, 4, and c, respectively

Table 1 - Common Interpolators (r, f are 0 where not specified)

Interpolator r(x) f(,)

SINC (lxi < o) sin (irx) 1 for I lI < 1/2
W/X

NN (lxi < 1/2) 1 sinc (Y)

LIN (Ixj < 1) 1 - fxI sinc2(v)

DFT-N
(Ixi < N12) N-I

sin (rx)

(N odd) . sinc (Nv - k)
Nsin kN-I(Nod iJ =-..

N_
1sin (Tx) *

(N even) N t- sinc(Nv-k)
1 /

_______________~~~+ ______________ inc[NPv1 I] +sine [NI+i]]_}

PCC 3 [sinc 2(v) - sinc (2p)]
lxI < 1 (ct+ 2)1xj 3 - (a + 3)lxF + (TV)2

I < Ixf < 2 t (Ixl 3 - 51x12 + 81xl - 4)
+- 2 [3 sinc 2(2p) - 2 sinc (2p)] - sinc (4v)

(ryp)2

These forms for DFT-N first appearcd in Ref. II.
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Another interpolator whose performance has been studied with methods of experimental mathematics
[12] is based on the discrete Fourier transform (DFT). The method is inspired by the Fourier-shift
theorem. The idea is to compute the DFT, perhaps using modem fast Fourier transform algorithms, and
then shift the phases of this finite, discrete transform as if it were the continuous Fourier transform. The
result is then Fourier-inverted to produce a grid of resampled values. Figure 2 also illustrates DFT-4,
which interpolates with four points. Table 1 lists the particularly simple analytic forms of the DFT
kernels.

3. THE STANDARD DESCRIPTION OF INTERPOLATORS

The two most common ways of designing interpolators are to require similarity between:

* the kernel r and the SINC function, which is the perfect interpolator (of oversampled functions),
and

* the Fourier transforms of r and SINC.

As an example of the first design method, the class PCC was defined not only by constraining r to
be smooth like the SINC, but also by requiring r(x) to agree with SINC(x) at all integral x. Also, the
original cubic convolution interpolator corresponds to the parametric value a = - 1 in PCC; this choice
equates the derivative of the kernel r(x) to that of SINC at x = ± 1. Other parametric choices can also
be understood through similar interpretations in real space. Figure 3 compares PCC for several values
of the parameter a to SINC, the ideal interpolator. The closeness of the a = - 1 curve to the SINC in
the range Ix I < 1 may explain the early preference for this parametric choice. Table 1 includes the
analytic forms for PCC [101.

Analogous comparisons in Fourier space are often made between practical interpolators and the
theoretical ideal. We use ""' to denote a Fourier transform, for example,

f(v) = I e ' r(x)dx (w - 2iv). (3)

The transforms of the Fig. 2 interpolators are listed in Table 1 and plotted in Fig. 4 for IV 1 3.
Among the examples shown, the transform of the SINC is the only one of truly finite frequency support,
with unit value inband (IvI < 1/2) and zero in the sidebands (IvI > 1/2).

Interpolator design is often based on metrics associated with f, such as inband cutoff, inband-to-
sideband energy ratio, or weighted deviations (ripple) from the ideal SINC transform over some
frequency range of interest. These approaches are rooted in an analogy with linear systems theory. Notice
that the Fourier transform of Eq. (1) may be written as

,(v) = E f(n)e -n"P(v). (4)
n

Therefore, J1 oc f, which is the usual relationship between a linear filter and its output. However,
the analogy is not complete because Ji is not also proportional to 1, the input to the filter. This can be
traced to the sampling process, which introduces sideband structure and, in combination with
interpolation, causes aliasing effects even if f is oversampled. Consequently, the relationship between
standard frequency-domain fidelity measures of f and interpolator accuracy is often obscure. For
example, if fx) - •t0'*, then Eq. (4) becomes:

.1(,) = e"'I e'("O-")"p(v) = e'i F 6(v - Po - n)p(v), (5)

5
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Fig. 3 - Kernels for Parametric Cubic Convolution (PCC) compared to SINC

1.0 I.- NN
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0 ifIS..' SINC
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z
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FREQUJENCY (C'rCL-FS /SAMPLE)

Fig. 4 - Transforms of the Fig. 2 kernels
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with 5 the Dirac delta function. (The last equality is justified in the next section.) Therefore, if r is to
perfectly interpolate a sinusoid of frequency vo (= coo/2r) (i.e., if 11 -1 - e'%b(, - vo)), then Eq. (5)
requires that

6(,v - io) = 6(y8 - Po - n)f(p) = , 6(,v - Po - n)f yo + n). (6)
n n

From this, it follows that

f(po + n) = 5r, (7)

with 60 the Kronecker delta. Therefore, interpolation with zero error at frequency % implies sideband
as well as inband constraints on P.

Furthermore, Eq. (7) implies that if r is designed to interpolate a sideband vo perfectly, then f does
not agree with the SINC transform at io, which has the value zero. This reflects the failure of the Nyquist
reconstruction formula in the sidebands. We show in Section 6 that kernels of finite support are often
better than the SINC kernels in reproducing sideband signals.

All the interpolators of Fig. 4 satisfy Eq. (7) for P0 = 0, meaning that a constant signal is
interpolated perfectly. The transform of DFT-4, being the sum of regularly spaced SINC functions (see
Table 1), satisfies Eq. (7) also for po = 1/4. Generally, DFT-N perfectly interpolates N/2 frequencies
spaced at intervals 1IN and starting at dc, provided that io = 0 (dc) and P0 = 1/2 (Nyquist) are each
counted as "half" a frequency. For o  0, 1/2 + n (n is an integer), sin (woX) and cos (wox) can be
reconstructed, in principle, from their sampled versions. But for P0 = 0, only the cosine component can
be present, and for P0 = 1/2 + n, the sampling process cannot detect any sine component (sin (2w(1/2
+ n)x) = 0 for integer sample values x), which therefore cannot be reconstructed by any interpolator.
Summarizing, DFT-4 perfectly interpolates any phase of sinusoids with frequencies po = 0, 1/4, as well
as the cosine component of a0 = 1/2.

As another example, DFT-5 interpolates P0 = 0, 1/5, and 2/5 sinusoids perfectly. Section 7 shows
that N-point interpolators can be constructed that perfectly reproduce an arbitrary linear combination of
N/2 particular frequencies, with the above '0 = 0, (1/2 + n) counting convention. The DFTs are thus
a particular subclass of these interpolators.

At frequencies that are not perfectly reproduced, the performance of DFT-4 or any other interpolator
is not easily understood in terms of P(v). Note that this transform depends on r(x) at all x, although the
squared error at shifts s,

d " [fi(n + s) -An + s)1 2, (8)

can depend on the interpolator kernel through only the specific tap weights {r(s +n)). This is because
the same is true for the sequence {f(n + s)) (see Eq. (1)), which constitutes the resampled function.

Section 4 shows how to exploit this fact. A formula for d2 is derived that depends explicitly on the
kernel r through only the relevant tap weights, rather than through f(p). The formula provides a superior
description of performance because in most applications only two to six tap weights are used, so that only
a finite number of terms need to be computed to evaluate the error d,2. On the other hand, when
expressed in frequency space, the error depends on an infinite number of values of the function P which
is, furthermore, often difficult to compute analytically.

7
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4. DERIVATION OF THE ERROR FORMULA

This section proves a fundamental theorem on the accuracy of any local interpolator. It also derives
a formula for the error as a function of image power spectrum and kernel tap weights, r(s + n). Several
preliminary results are required, including a generalization of Parseval's Theorem.

A lemma central to the method used here is proved in the Appendix:

comb(x) *, comb(v). (9)

The correspondence * relates a function to its Fourier transform. The comb function is defined by

comb(x) = E 6(x - n), (10a)

where 6 is the Dirac delta function. Equation (9) says that the comb is its own Fourier transform. Thus,
the transform of Eq. (lOa)

comb(v) = e-2vs (10b)

gives the relation used in Eq. (5).

Other correspondences for arbitrary functions g and h are: the Fourier shift theorem

g(x + s) 00 e 2 xis"g(,) (11)

e Z"'ogex) + g(O .

and the convolution theorem

g(x)h(x) * ( * A)(v) (12)

(g * h)(x)

The definitions of convolution and of the comb (Eq. (10a)) may be used to prove

, g(x - n)h(,) - [g * (comb • h)](x). (13a)
n

A special case of Eq. (13a) is also useful:

, g(x - n) = (g * comb)(x). (13b)

These relations can be used to express a discrete sum of squared sample values of a function g in
terms of its Fourier transform g. Letting g - g2, x - 0 in Eq. (13b), we can write

, g 2(n) = (g2 *comb)(0). (14)
n

8
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Letting .rdenote the Fourier transform operator, we successively apply Eqs. (12) and (9), the definition
of .r-1, and Eq. (12) again to simplify Eq. (14) further:

E g2(n) = [.r-(._9(g 2 comb))J(0) = [..-l(y(g2) comb)](0)
n (15)

= J dP'[._g 2)(p') comb(v')] = J d,'[§ * g](V) comb(z').

Next, the frequency-space version of Eq. (10a) is used in Eq. (15), together with the definition of
convolution:

E g 2(n) = E J d,'b(,'- n) J dg(,' - )§(P)
n " (16)

E E J dpg(n -
n

If g is real, then

9(p)= *(-) Vy, (17)

and so from Eq. (16),

g2(n) = J dpg*(v - n)g('). (18)
n n

If, furthermore, the sequence g(n) represents an oversarnpled version of g, so that §(P) = 0 for I 'I
> 1/2, then Eq. (18) simplifies to

Sg2(n) = J dvig()1 2, (19)
n

which is closely related to Parseval's Theorem. Note this distinction, however: in Eq. (19), § is the
Fourier transform of the underlying continuous function g, not of the discrete Fourier series {g(n)). These
two transforms are equal if g is oversampled, but even if it is not, Eq. (19), which we will call the
generalized Parseval's Theorem, still holds in an average sense described below.

Equation (19) implies the surprising fact tl at as long as g is oversampled, Eg2(n) is independent of
where the sampling grid is laid down relative to the image. Shifting the grid by an amount t in one
direction is equivalent to shifting g(x) in the other:

g(x) -- g(x + t). (20)

According to Eq. (11), in Fourier space Eq. (20) is equivalent to

g(v) - §(v)e 2 iP' , (21)

under which change Eq. (19) is invariant. Because the value of Eq. (19) is independent of grid placement,
we call it the strong form of the generalized Parseval's Theorem. When g is not oversampied, a weaker
version of Eq. (19), described below, still holds.

9
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Under the translaaon of the function g by the amount t e [0,11, according to Eq. (21), Eq. (18)
becomes

gl(n) - " e2 "' J dv" ' - n)ell). (22)
n R

Notice that the result of averaging Eq. (22) over t: 0 - I is Eq. (19). That is, the weak form of the
generalized Parseval's theorem is also expressed by Eq. (19), if the left-hand side is understood to be
averaged over all placements of the sampling grid.

In our application of Eq. (19), Eg2(n) is d,, which is a measure of interpolation error. The mean
over t amounts to an average over grid translations; thus it is appropriate whenever the imagery of
interest contains no preferred features relative to the sampling grid, which is the usual practical case.

To identify g with the interpolation problem, we let

g(x) = f(x + s) - .x + s). (23)

Then Eq. (8) allows the identification

d2  g 2(n). (24)
n

If the sampling grid were dense enough that {g(n)} represented an oversampling of g, then Eq. (18)
would become Eq. (19), so that

d, = I (25)

in which, from Eqs. (23) and (11),

R() = L(P) - j(0)le re ' s.  (26)

Equation (25) also has strong and weak versions. If, for example, g is oversampled, then Eq. (25)
is exact, without any averaging over grid translations. Unfortunately, for the interpolation problem, fi,
and hence g is almost never bandlimited. Therefore, g cannot be oversampled, even if f is. So the
condition under which Eq. (25) has been shown to hold in the strong sense is not usually satisfied when
g is given by Eq. (23).

Nevertheless, when Eq. (23) defines g, Eq. (25) is still exact wheneverf is oversampled, even if g
is not.

Using Eq. (13a) in Eq. (1) with h = f and g = r, taking the transform, and applying Eq. (11) and
Eq. (12) results in:

jj(0) = 0v)[comb *A]0i), (27)

which is usually not bandlimited because neither factor is, as shown below. Consequently, g in Eq. (26)
is usually not bandlimited.

10
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The frequency version of Eq. (13b) allows Eq. (27) to be rewritten as

f,(v) = fP() A( - m). (28)

The second factor is nonzero for arbitrarily large v, as is the first whenever the kernel r is of finite
support, i.e., for all practical interpolators. Consequently, fj is not bandlimited, as claimed.

Nevertheless, using Eq. (18) together with Eqs. (26) and (28) results in

E g2(n) = E  I dv[*(v - n) E J*( - n - m) -. (v - n] x
S,, ,, (29)

e2"v[P(v) j )(v - )-(v),

which we now show to be independent of grid placement as long as f is oversampled.

Assuming then that

J(v) =0 for I I (30)

we examine the most complicated cross term of Eq. (29):

E e 2 I dvt *(v - n) E J*(v - n - m)P(,v) J j(i' -f)" (31)
n m j

Because of Eq. (30), the integration in Eq. (31) kills all summand terms except when n + m = j. So Eq.
(31) becomes

e 2ri f dp* (P -n) (v -n - m)t(v) (, -n - m). (32)

Changing variables, P - , + n + m, in Eq. (32) produces

J dpLV(P)12{ e2 iP (v + m)r(v + n + m)j. (33)

Each of the other cross terms of Eq. (29) produces a result similar to that of Eq. (33), but with a simpler
expression within the braces. The final result

d' L( 1e, 2,)dP, (34)

with

e2(,) n= +  *(P + m)( + n + m)} (35)

II
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is manifestly independent of grid placement. The quantity L(P)I 2e2(,) is called the error spectrum. The
error factor e2(p) depends only on the interpolating kernel, not on the image being interpolated. Equation(35) may be expressed more simply as

e2(v) = IE,(V)12, (36)

with

E,(Y) - j [e2""VP, + n)] - 1, (37)
n

a "complex error" factor.

Summarizing, for any fixed shift s, the interpolation error is independent of an oversampled image's
location relative to the sampling grid. Furthermore, the error is linear in the power spectrum. Power
spectrum here simply means the squared modulus of the Fourier transform. It is not necessary to assume
that ( x)) describes a stationary stochastic process, when the power spectrum equals the Fourier
transform of the autocorrelation function. Equation (34) holds regardless of the stochastic character of
f, including deterministic.

Notice that if s is a random variable that can be described only probabilistically, then the Fourier
series in Eq. (35) can be used to express the moments of the error, which is also a random variable,
because all the s dependence is contained in the first factor. For example, in the interpolation (as opposed
to the resampling) problem, for which s may be considered uniformly distributed on [0,1], the mean value
of the error is just the n = 0 term of Eq. (35).

Also note that iff is undersampled, then Eq. (34) is still true in the average sense discussed earlier.
The proof is similar to that used for the above weak form of the generalized Parseval's theorem. That
is, the mean of d, over all grid placements depends only on the power spectrum off and the error factor
(Eq. (35)).

At this point, the dependence of the interpolation error on the image power spectrum has been
isolated in Eq. (34), but the error factor remains expressed as an infinite sum over sidebands in Eqs. (36)
and (37). The appearance of P(') in Eq. (37) (and hence in Eq. (34)) at only the sideband frequencies
(i' + n) is symptomatic of the complementary fact that d2 can depend on the values of r(x) only at the
"side shifts" (x = s + n). This latter fact means that as long as the values r(s + n) are kept fixed, r(x)
for other x can be changed quite arbitrarily without changing the value of d,2, despite the attendant
changes in (v). This invariance is not obvious from Eq. (37) which is, moreover, impractical because
realistic interpolators have infinite frequency-support. Consequently, the next logical step is to express
E3 (€) in terms of r instead of f. We can expect to produce an expression containing only a finite number
of terms whenever r is of finite support.

The first term of Eq. (37) may be written as

e2 "P(v + n)= e e 21 3 r(x)e -2vix(r+n)dX. (38)

n n

The real-space version of Eq. (10b) together with Eq. (10a) then permits Eq. (38) to be rewritten as

J r(x)e -2idxv comb(s - x)dx = e-2"i',sn)r(S + n). (39)
n

Therefore,

E,(,) = -* e-l'<n)r(S + n)] - 1, (40)
n

which is the analog of Eq. (37) in terms of r instead of P.

12
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When expressed in real quantities orJy, Eqs. (36) and (40) become

e,(v) = 1 - 2 E cos ([n + s])r(n + s) + E cos (m) E r(n + m + s)r(n + s), (41)
n m N

which is the analog of Eq. (35).

Equations (40) and (36), tcgether with the strong and weak interpretations of Eq. (34) permit the
evaluation of any interpolator at shift s in terms of a finite number of kernel values whenever r has finite
support. Should f have finite support, Eq. (37) plays a similar role to that of Eq. (40).

5. RELATION TO PRIOR WORK

The papers by Park and Schowengerdt [9,101 are seminal to this work. They considered an error
measure

d 2 = J (x) -ftx)] 2dx. (42)

Notice from Eq. (8) that
2= <d>, (43a)

where < > denotes a mean value over an assumed uniformly distributed random shift s: 0 -. 1. The
error d2 is thus appropriate when a (quasi) continuum of resampled values is of interest as, for example,
in some image display applications.

Park and Schowengerdt [10] also derived an error factor e2(i) that can be interpreted similarly as the
mean value of the error factor defined in this report. That is,

2(p) = <e 2(v)>. (43b)

The mean value of the fundamental equation (Eq. (34)) is

d2= J Lt()1 2e2 ,)d,, (44)

and the mean value of the error (Eq. (41)) can be written as

e2( ,) = 1 - 2P0v) + E cos (wom)(r * r)(m), (45)
m

in which r is assumed to be symmetric (as in Ref. 10). Equation (45) can be called the fundamental
formula of Ref. 10. It is accompanied by a fundamental theorem, namely the fundamental theorem that
was derived in this report, but with the substitutions

e2(P) -* e2(v) and -, d 2 , (46)

in Eq. (34).

This theorem was less surprising in Ref. 10 than it is here, because there it was shown to hold only
in the above sense of an average over the shift s of the two sampling grids relative to each other. This
should be distinguished from the grid placement averaging considered in the weak versions of the
theorems discussed previously. That operation held the shift of one grid relative to the other fixed at the
value s; the pair of grids was shifted as a unit relative to the image, or vice versa.

13
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Also, in applications for which some performance criterion is defined in terms of d 2 or e2(y), Eq.
(45) is normally useful only if an ansatz is first used for r (and, hence, also for f). For example, d 2 can
be minimized for a given power spectrum, or e2(v) can be set to zero at selected frequencies for some
class of interpolators defined by the ansatz. In Ref. 10, the ansatz is PCC (Table 1). This allows the
parametric calculations of f and r * r which can then be inserted into Eq. (45), to be followed by the
selection of that parameter at which minimizes d 2.

On the other hand, when Eq. (41) is used to constrain the error-at some fixed s-the resulting
equations depend on the N kernel values {r(s + n)), not on the transform of r or its self-convolution.
Typically, this results in algebraic equations for these tap weights for any shift s, permitting the
calculation of optimal kernels, rather than kernels that are optimal only in an averaged sense, and that
are constrained by some ansatz. As noted earlier, in all optimality contexts considered in Ref. 10, the
solutions for PCC are suboptimal because of the smoothness constraint defining the PCC ansatz. Notice
from Table I that r for PCC is continuous, as is its first derivative, for all values of a.

6. PERFORMANCE EVALUATIONS

Examples

Figure 5(a) plots the error factors for some common interpolators at a .25 sample shift. The
frequency 0.5 cycles/sample is the Nyquist frequency, above which no energy is present in an
oversampled image. Generally at low frequencies, e.,v) varies as P1 for Nearest Neighbor, v4 for Linear,
P6 for CC ("Cubic Convolution," i.e., PCC with = - 1/2) and 9 for DFT-N interpolators. The small
errors near dc are typical of polynomial methods. N-point interpolators that are designed optimally in this
low-frequency region, called LF-N, have squared errors that vary as ;. Nearest Neighbor interpolation
is the same as LF-1, and LIN is LF-2. However, as noted earlier, CC is not LF-4, for whiche,(v) is
smaller at low frequencies, varying as v.

100 - ----

10 NEAREST NEIGHBOR

S. . LINEAR
S-...cc

o --- DFT-4
0 4

LU 10
-

10
- 6

SHIFT .25

( 0"0 4 0L 1:6C
I

FREoIJENC, 4 LU- SAMeLU

Fig. 5(a) - Performance of standard interpolators (shift = .25 samples)
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Fig. 5(b) - Performance of standard interpolators (shift =.50 samples)
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Fig. 5(c) - Performance of standard interpolators (DFT-4 at three shifts)
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By contrast, a DFT interpolator of any order usually has a low-v error that varies like p2, the same
as for NN. An exception occurs at s = 1/2 (Fig. 5(b)) at which e2( P) improves for DFT at low
frequencies, varying as 0, like LIN. Associated with this fact is the unusual property of DFT
interpolators that they may perform better at the normally most stressing shift, s = 1/2, than at lower
shifts. Figure 5(c) compares the performance of DFT-4 at three shifts. The plots show that, when applied
to imagery with predominant energies below approximately .15 cycles/sample, DFT-4 errors actually
increase as the shift decreases from .5 to .3 samples.

LF Interpolators

Energy in imagery is usually concentrated at low spatial frequencies, and the LF interpolators are
designed to work well generally for image-like spectra. For LF-N, the error factor is constrained to be
zero at dc, and the remaining degrees of design freedom, the number of which is determined by N, are
used to make zero at v = 0 as many derivatives of the error as possible. This can be accomplished easily
by requiring the complex error (Eq. (40)) to have zero derivatives. However, it is convenient first to
multiply E,(iv) by a phase factor e" s. Because of Eq. (36), this leaves unchanged the physically
meaningful real error factor e,i'). Consequently, we can modify E5 ,() of Eq. (40) to:

E,() - e -e-wnr(s + n) - e . (47)
n

The kth derivative of Eq. (47) at w = 0 is to be zero, meaning that

E - + n) = Sk. (48)

It is clear from Eq. (1) that Eq. (48) requires r to be the interpolator that perfectly reproduces the
polynomials ?* (k = 0, ..., N - 1) from a nearby set of N sample points. (We generally restrict s to the
values Is 1 < 1/2 (N odd) and 0 ! s < 1, (N even).) This is the well-known Lagrange interpolator,
which fits a unique (N - 1)-order polynomial to N points. Notice, however, that the Lagrangian
polynomial so constructed is valid only on the central unit interval defined by the N sample points used
to interpolate. As soon as the next unit interval is considered, a new sample point enters the finite sum
in Eq. (48) and an old one leaves, so that the interpolated function f, assumes the value of a new
Lagrangian polynomial. This means that fi, as well as its derivatives, can be discontinuous, a fact
reflected in the Lagrangian kernels, r(x). LF-1 is just NN, which has discontinuities at x = ± 1/2. LF-2
is identical to LIN, which has derivative discontinuities at x = 0, ±1. LF-3 has discontinuities at
x = 0, ± 1/2, and ±3/2, and LF-4 has derivative discontinuities at x -0, ± 1, and ±2.

Figure 6 illustrates these kernels for N = 1 through 4. The discontinuities at half-integers that appear
in most interpolators with N odd usually make performance improvement marginal as N - N + I with
N even. The remainder of this report concentrates on comparisons with N even.

For positive arguments, the symmetric Lagrangian kernel is

fi (j~s)

r + ns)0 - .N : 1 (49)

II V -n)
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Fig. 6 - Kernels for Low-Frequency (LF) optimal interpolators

Here [ means "integer part of." Note that for integral q and e > 0, [q + e] i q, even if eq is
negative.

Figure 7 compares the error factors (Eq. (41)) for LF interpolators to that of SINC at a standard shift
s = .25. (Notice that the SINC has finite support in frequency space, making Eq. (37) rather than Eq.
(40) more convenient for computing the plotted error.) Although e,2() can be made flatter at i, = 0 by
using higher order interpolators, it becomes large beyond the Nyquist frequency. In the limit N-. ao,
LF-N approaches the "ideal" SINC interpolator. But clearly, the SINC is ideal only inband; for image
energy beyond P = 1/2, the polynomial interpolators are superior.

7. OPTIMAL INTERPOLATORS

If the form of the image power spectrum is known, the results of Section 4 can be used to find the
N-point interpolators that minimize the total squared error. For example, for a constant spectrum on
,v e [-1/2, 1/2], the v-integration from Eq. (34) can be calculated explicitly by using Eq. (41). The result
is

d -- 1 - E r(n + s) sinc (n - s) + E sinc (m) E r(n + m + s)r(n + s)

(50)

= 1 - ] r(n + s) sinc (n + s) + r 2(n + m + s),
n ?n

because sinc (m) = 6;. The sums in Eq. (50) are finite because r(x) is zero for Ix I > N/2.
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Fig. 7 - LF and SINC error factors compared

With the N tap weights r(n + s) treated as independent variables, d, can be minimized by
differentiation of Eq. (50). This leads to the solutions:

r(n + s) =sinc (n + s) In + s I N12. (51)

Thus, SINC-N, the truncated sinc interpolator, which is much eschewed in the literature (Ref. 5, p.
35) because of the Gibbs' phenomenon in its Fourier transform, is in fact the optimal N-point interpolator
for a flat inband image spectrum. Figure 8 plots the error factors for SINC-2,4,6. For a constant image
spectrum, these can also be interpreted as the error spectra. Notice that the truncated SINCs reproduce
certain frequencies almost perfectly. That is, the error plunges to near zero at certain frequencies for all
shifts. This means that the continuous functionfi that results from interpolating from any set of sampled
values of a sinusoid with one of these frequencies is nearly a copy of that sinusoid.

The oscillations in the interpolator transform that correspond to these dips in the error factor are
often seen as undesirable. Figure 9 shows the result of applying a Hann window to SINC-6, which is a
standard technique for reducing sidelobe oscillations. This windowing is just the multiplication of the
kernel by a raised cosine to taper its edges and remove Gibbs' overshoot in the transform [13]. The figure
shows the effect on the error factor. It also is smoother after windowing, which effects a trade in
excellent reproduction of certain frequencies for a more uniform performance.
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Fig. 8(a) - Performance of truncated SINCs at three shifts: SINC-2
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Fig. 8()-Performance of truncated SINCs at three shifts: SINC-4
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Fig. 8(c) - Performance of truncated SINCs at three shifts: SINC-6
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Fig. 9 - Effect of windowing SIN C-6 with a Hann window
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Figures 8 and 9 contain instances of a general problem with truncated kernels-imperfect dc
response. This is often an undesirable feature that is remedied by renormalizing the kernel. For SINC-N,
at any given shift s the replacement

sinc (n + s) sinc(n+s)

S sinc (m + s)

achieves the desired effect. Figure 10 shows the errors for N = 6 renormalized SINCs. They should be
compared with Fig. 8(c). The lowest frequency local minimum has been shifted to dc; the second
minimum has been shifted to the right; and the third's location is almost unchanged. The latter two
minima are now also somewhat shift dependent, meaning that no longer is a continuous sinusoid at these
frequencies especially well reproduced.

10 ..

too - ... ....... .............

/

SHIFT

0 ,,

< O_ 2
" 10 50
0 -- -

. . 25

-- -- 10

1o- 4

10 6 1

10-6

00 02 04 06 08 10
FPEQUENCIT CiCLES,'SAMPLEF

Fig. 10 - Effect of renormalizing SINC-6 to have zero dc error

Figures 8 through 10 show the ease with which the performance of common modifications of
SINC-N, or of any other interpolator, can be predicted by using the formula in Eq. (41). Moreover, Eq.
(34) has also been used to show that SINC-N is the minimum squared-error N-point interpolator for a flat
Nyquist-sampled spectrum.
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More generally, the minimum squared-error N-point interpolator can be derived, in principle,
whenever V(;)I 2 is known up to an overall scale factor. Combining Eqs. (41) with (34) results in

d' fR(O) - 2 R(n + s)r(n + s) + R(m) r(n + m + s)r(n + s), (53)
n If It

where

R(x) J cos (xW) L(v) 12d. (54)
I-0O

Minimizing Eq. (53) with respect to the independent variables r(n + s) results in an equation for the
optimal N-point kernel

R(n + s) = r(n + s - m)R(m), (55)
m

valid for those n for which r(n + s) in Eq. (53) is nonzero, i.e., for the N values of
n: [-(N - 1)/21 .... [(N - 1)/2].

A comparison of Eq. (55) with Eq. (1) shows that the former is equivalent to the requirement that
r serve as a perfect interpolator for the function R(x) for x e [-N12, N12], i.e., over the same support
for which r(x) is allowed to be nonzero. Equation (55) appeared in Ref. 2 as the condition minimizing
a stochastic mean-squared-error. There the discrete sample values, here called fin), were assumed to
represent an underlying stationary, ergodic, stochastic process. The function R(x) was the autocorrelation
function of that process, for which Eq. (54) is also valid if V(iA)I 2 is interpreted as the power spectrum
of a stochastic process with the above properties. Equation (55) has now been shown to hold even when
thefin) result from the sampling of a deterministic function, if R(x) is interpreted according to Eq. (54)
instead of more restrictively, as the autocorrelation function of a random process.

Because R(m) is syn.metric, Eq. (55) represents a particular class of matrix equations called Toeplitz.
General procedures [14,151 have been developed to solve these iteratively. Thus, in principle, r(s + n)
can always be found as a function of 2N numbers, R(m) and R(n + s), with m = 0, ..., N - 1 and n

-[(N - 1)/21, ... , [ -(N - I)/21.

If these quantities are known, then Eq. (55) can be used to find the optimal r(n + s). Notice that all
the s-dependence in Eq. (55) is implicit, i.e., in the arguments of functions. This means that good
interpolation may be possible without knowledge of s, as long as estimates of R(m) and R(n + s) are
available. For example, if two images shifted by an unknown s are to be compared after one has been
resampled, then R might be interpreted as an autocorrelation function, and periodograms [161 could be
constructed from either image to estimate R(m), and from both together to estimate R(n + s). This
technique introduces errors because of imprecision in the estimate of R. However, it completely
eliminates errors from a prior step that we have ignored: estimation of the shift s. The competition
between these errors depends on the performance of registration methods and is not studied here.

Lorentzian Spectrum

Because the optimization equations for the stochastic problem are identical in form to Eq. (55), prior
results can be applied immediately to the present problem. One particularly surprising result occurs for
a Lorentzian profile, that is a power spectrum of the form

L?(v)12 1 (f > 0). (56)
E2+
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The transform of Eq. (56) is

R(x) - e-2vIxke, (57)

which can correspond to the autocorrelation function of a first-order autoregressive [AR(1)] stochastic
process. Equation (56) is also a reasonable model for much natural imagery, independently of any
probabilistic assumptions.

For the model in Eq. (56), the optimal N-point (N 2) solution can be verified by substitution into
Eq. (55) as:

r(s) = 1-

p -p

r(s-S p S
- - = (58)

otherwise, r(s + n) = 0,

with p - e -2'W' and 0 O s < 1,

which has support 2. That is, the optimal N-point solution is in fact a two-point interpolator! This curious
result, first shown [2] for stochastic signals, also implies that for a I/v2 power spectrum (the limit of Eq.
(56) as e - 0), the optimal N-point interpolator is just linear interpolation, which can be verified as the
limiting form of Eq. (58).

Here we consider the general power-law spectrum

L()1 2 - I (59)

Figure 11(a) shows e2 t(,)'(,) 12, which is the power spectrum of the error, that is, of the difference
between interpolated image and true value, for LIN, LF-4, and standard (smooth) Cubic Convolution
(CC), for a p = 2 power spectrum, and at a shift of .25 samples. Although LIN is only a two-point
interpolator, it has been claimed to be optimal for p = 2. That is, according to Eq. (34), the integral of

the error spectrum is smaller for LIN than for any other interpolator, regardless of the value of N. Figure
11 shows how LIN accomplishes this feat. When considered only out to the Nyquist frequency (V = 1/2),
LF-4 and CC are actually superior to LIN (by an rms factor of approximately 1.38). This remains true
out to twice the Nyquist, over which frequency range CC and LF-4 are each a few percent better than
LIN. It is only at higher frequencies (Fig. 11(b)) that LIN recovers from its inband inferiority. If Eq. (59)
with p = 2 is assumed to hold for all frequencies, then LIN is a few percent better than either LF-4 or
CC.

Figure 11(b) explains a counterintuitive result implied by the fact that LIN is optimal for p = 2. For
those signals, including imagery, for which the p = 2 power spectrum is a reasonable model, experience
shows that many polynomial interpolators outperform LIN. The reason this does not contradict the
optimality claim for LIN is that the spectrum for which LIN produces the minimum error is usually an
invalid model beyond the Nyquist frequency, when applied to imagery.
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Fig. I1I - (a) Error spectra for LIN, LF-4, and cubic convolution (CC) for
I/v2 image spectrum; (b) same as (a), but including higher frequencies
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A power-law spectrum is commonly used to characterize one-dimensional slices of imagery, with p
typically in the range 1 < p < 4. Equation (59) is often assumed to hold in a piecewise sense, possibly
with different values of p in different frequency ranges. Some low-frequency cutoff usually must be
chosen to keep the total image energy (variance) finite, and commonly iv = 1/2 (Nyquist) is chosen as
a practical high-frequency cutoff. Thep that is appropriate at low frequencies is often considered the most
important because image energy tends to concentrate there. However, after interpolation, especially with
polynomial kernels, the residual energy in a difference image often resides at higher frequencies, as
exemplified in Fig. 11. Therefore, for extreme accuracy in inter:')lation, the high-frequency spectral
content can be important also.

p = 4 Power Law Spectrum

As a second application of Eq. (55), we consider the case p = 4 in Eq. (59), which appears to be
the limiting power of low-frequency divergence in natural imagery [17]. For N = 2, the solution to the
Toeplitz equations is

r(s) = R(O)R(s) - R(1)R(1 - s)
R 2(0) - R 2(1) (0 s <1). (60)

r(- ) =R(O)R(1 - s) - R(1)R(s)
R 2(0) - R 2 (1)

Although the integral in Eq. (54) defining R for the power spectrum of Eq. (59) diverges at low P for
p = 4, the power spectrum of the error e2(p) LtQ') 12 is convergent at low frequency as long as

e2,(S) - v3 +1, with a > 0. (61)

This condition is violated by NN and (usually) DFT interpolators, for which 5 = -1; but even for LIN,
the lowest nontrivial polynomial interpolator, 5 = 1. In practice, this means that the performance of NN
and DFT can be highly dependent on the low-frequency cutoff that must exist in real imagery.

The explicit calculations of the kernel in Eq. (60) need a convergence mechanism for R, and so we
solve instead for the power spectrum

L(p) 12 - 1. (62)

Then the limiting case e - 0 will give the p = 4 power-law result. For Eq. (62), R(x) in Eq. (54) can
be evaluated in closed form:

R(x) - exp -- Cos I - +sin [--11 (63)

Then the minimum-error two-point interpolator for the power spectrum in Eq. (62) can be calculated
from Eq. (60) by using Eq. (63). In the limit f -' 0, the solution (Eq. (60)) approaches linear, just as it
does in the p = 2 case.
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Similar calculations for p - 4 can be made for the four-point optimum. The Toeplitz solution for
the power spectrum Eq. (62) is quite complicated, but the limiting solution for e - 0 is simple:

1

r(s) = (1 - s)(5 + 4s - 5s2)

r(s 1) = s(1 - s)(7 - 5s) (64)

15

r(x)=0 IxI >2

r(x) = r(-x) Vx.

Figure 12(a) shows the error factors at s - .25 for three four-point interpolators, and Fig. 12(b)
shows the corresponding error spectra for a p = 4 input spectrum. Beyond v = 1, the curves are nearly
identical, unlike the corresponding p = 2 curves. Nevertheless, it is again evident that the best

interpolator (as measured by Fd/) depends on the frequency v, at which thep = 4 spectrum might be
truncated to match realistic image data.

Integration of the Fig. 12(b) curves shows that over all frequencies (Pt = + co), the optimal solution
(Eq. (64)) is only about 2 percent better than either LF-4 or CC; for 't = 1/2, it is 8 percent and 9
percent better, respectively. The optimal is still superior for P, = 1/4, but for v, = .1, LF-4 produces
5.5 times less rms error than the (Pt = + oo) optimal. Evidently from Fig. 12(b), e,(sj) for the optimal
varies as 4 for small P, so that the error spectrum approaches a constant; for LF-4, e, (0) varies as Pa.

Gaussian Spectrum

One final class of power spectra is considered. A single point-like object or an assortment of such
that are spatially separated by several times the blur imposed by a sensor's optics corresponds to a power
spectrum proportional to the square of the sensor transfer function. Often a good model of this function
is a Gaussian, and so our final example is

I?(_)22 _ e- 22 . (65)

This corresponds to a system point spread function Of

p(x) - e(- 2r Vu2) (66)

We consider three cases: a = 1, 1/2, and 1/3, measured in samples. The first case represents an
imaging system that samples at nearly the Nyquist rate; the third represents one that undersamples. For
example, a line of square detectors (Fig. 13(a)) used in a scanning imager with "matched optics*
corresponds approximately to a = 1/3 sample in the cross-scan direction, and to a = 1 sample in the
in-scan if the continuous detector output is sampled at a rate of approximately three times per scan across
a detector. In this situation, a cross-scan sample corresponds to one detector width; an in-scan sample
corresponds to 1/3 of a detector width. Because the detectors are butted in the Fig. 13(a) example,
a = 1/3 also corresponds to the effective sampling rate in either direction along a mosaic array of closely
spaced detectors (Fig. 13(b)) that image in a staring mode.

*Optics in which the first zero of a centered point response falls at the detector edge.
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Fig. 12 - (a) Errors for three four-point interpolators: the (1/Y4}-optimal, LF4, and CC;
(b) error spectrum for three four-point interpolators and a 1/04 image spectrum
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Fig. 13 - (a) Linear detector array for a scanning sensor;
(b) two-dimensional array for a staring sensor

The solution of Eq. (55), using Eq. (54) with the spectrum of Eq. (65), is tedious but
straightforward. For N = 2 the optimal kernel is

r(s) - with y = e -'" 2  (0 < s < 1), (67)

which is plotted in Fig. 14 for the three values of a. Like all kernels derived in this report, it is
symmetric. Figure 15 plots the analytically complicated N = 4 results. Figure 16 shows the image power
spectra corresponding to the three values of a; these spectra have been scaled so that the total energies,
i.e., image variances, are identical. Figures 17 and 18 show the N = 2 and N = 4 error factors,
respectively, both for a shift of .25. Notice that for a = .33, the performance as N changes from 2 to
4 is small. The square roots of the integrals over the error spectra (Fig. 19) are proportional to the rms
errors, and the difference of these proves to be less than I percent. On the other hand, if the spectra are
truncated at the Nyquist frequency, the error reduction is 13 percent.
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Fig. 16 - Gaussian power spectra with identical total energies
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Fig. 17 - Error factors for two-point Gaussian-optimal kernels
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Increasing a, which is measured in samples, can be thought of as either raising the sampling rate or
compressing the spectrum toward dc, as shown in Fig. 16, because the unit used here to measure
frequency is always cycles/sample. For a = .5 samples (Fig. 20), the rms error is reduced by
approximately 16 percent as N changes from 2 to 4; for a = I (Fig. 21), it is smaller by a factor of 3.3.
The failure of the four-point method to greatly out perform the two-point for a = .33 reflects the
difficulty of designing an interpolator with a consistently small error factor over a wide range of
frequencies.

Our final comparison is among the various values of a for a given N. As noted above, the rms error
(for P, = + oo) is nearly the same for N = 2 and N = 4 when a = .33. Either case can, therefore, serve
as a common baseline. For N = 2, the rms error is reduced by a factor of 1.9 as a changes to .50, and
by another factor of 3.7 as a changes to 1.0. For N = 4, the corresponding reductions are 2.58 and 10.3,
respectively. Optimal interpolation achieves its greatest gains for narrowband spectra.

Hybrid Designs

Figures 11 and 12(b) demonstrate that polynomial interpolators may be guilty of overkill at low
frequencies. Optimal interpolators achieve superior performance by leaving some residual energy near
dc. Similar results are evident in the Gaussian error spectra of Figs. 20 and 21. On the other hand, if the
image spectrum actually ends short of the Nyquist frequency, then the 't = + co optimal kernels can
perform poorly because their domain of superior performance is often at high frequencies. Therefore,
both polynomial and a'1 = + oo optimal solutions have defects when applied to truncated spectra. This
problem could be remedied by solving Eqs. (55) and (54) for a spectrum truncated at the Nyquist limit.
Such solutions are quite complicated analytically.

An alternative approach uses Eq. (40) to define interpolators that sacrifice some of the low-frequency
performance that is present in LF-4, for example, for smaller high-frequency errors. The error factor for
LF-4 varies as P'8 near dc, but image power spectra seldom diverge as fast as 1/,4. Therefore, the error
spectrum is usually of order greater than P4, rapidly dying at dc.

By using Eq. (40), two degrees of design freedom in a four-point interpolator can be spent to set the
error factor to zero at, say, half the Nyquist frequency, a, = 1/4. The remaining two degrees of freedom
can be used to constrain to the value zero: (a) the error factor at dc, and (b) the first derivative of the
complex error E,(,) at dc. Two degrees of freedom are required for the first step because two ?hases of
a sinusoid may be present in an image for P = 1/4. The dc conditions (a) and (b) make (d/d,)"[(e,,)1 10 =

0 for n = 0, ..., 3, just as for linear interpolation.

Figure 22 shows error spectra out to the Nyquist limit that result from applying three interpolators
to a 1/a2 spectrum. All these may be regarded as four-point interpolators because, as was shown
previously, LIN is actually the optimal N-point interpolator for a 1/ 1 spectrum when p = 2. Above
a' = .2, benefits of the above hybrid design are evident.

Figure 23 shows another set of error spectra, now for a 1/a image spectrum, in which the optimal
four-point p = 2 interpolator LIN has been replaced by the optimal four-point p = 4 interpolator (Eq.
(64)). Here the sacrifice in low-frequency performance required to construct the hybrid is severe. The
image power is too divergent near dc, and the hybrid solution is inferior.

Figure 24 shows the final hybrid example. The image spectrum is Gaussian with a = .33, and the
vi = + oo optimal is compared with LF-4 and the above hybrid. LF-4 overkills low frequencies, the
optimal achieves its largest relative gain beyond the Nyquist limit, and the hybrid is the best choice for
an image spectrum truncated at the Nyquist.
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Fig. 24 - Error spectra as in Fig. 23, but with a = .33 Gaussian input spectrum

Nulls in the error factor or its derivatives could be forced at other frequencies besides v - 1/4, or
even instead of P = 0. For higher N, larger numbers of such constraints can be imposed, all implemented
by setting Eq. (40) or its derivatives to zero at the selected frequencies and solving for the r(n + s). Such
choices are dictated in pra-tice by a knowledge of the types of power spectra over which the interpolation
methods are to be applied.

8. BEYOND INTERPOLATION

The optimal interpolatorb described above for orders N = 2 and N = 4 usually reduce errors by
factors of less than two whe ..ompared to conventional interpolators of the same order. Larger reductions
are achievable by increasing N, and the above methods provide a means for designing such interpolators.
For example, the error factor fcr LF-10 was shown in Fig. 7, and Fig. 25 compares the error spectra
after using LF-2,4,-10 on a i/A spectrum truncated at , = 1/2. LF-10 produces a smaller rms error than
LIN by a factor of 2.3. Reductions with increasing N generally occur because N equals Nd, the number
of design degrees of freedom for the interpolator. However, for certain applications, Nd can be increased
more effectively without increasing N.

In change detection, two digital images are often compared by subtraction after one has been overlaid
on the other, i.e., resampled. O'r analyses are well suited to this technique. The mean square error d,
becomes a measure of residual clutter after subtraction.

The change to be detected may be an extensive one, such as a region of blood flow on an angiogram
or large-scale agricultural evolution as seen from space. It may be a local change, such as the motion of
a small object. The general goal is to combine the two images so that only such changes persist.

The N-point interpolators described above are actually digital filters operating on an image. To
implement change detection with interpolation, a second image is used, but only in the subtraction step.
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Fig. 25 - Error spectra for LF-2,-4,-10, and p = 3 spectrum, shift = .25

It can be thought of as a template for gauging interpolation accuracy. However, by digitally filtering both
images before subtraction, Nd can be increased to nearly 2N. This dual filtering introduces a new element
into the analysis, consisting of constraints on the individual filters to preserve the change that is to be
detected. For example, for extensive changes, an appropriate constraint may be to require perfect dc
response of each filter. For detection of small moving targets of known shape, the filters can be
constrained to conserve target energy or peak amplitude.

Figure 26 illustrates performance results for two examples of this dual difference filtering. These
should be compared to Fig. 25 (note the scale change). The dual LF-4 is the analog of the interpolating
LF-4. The constraint imposed on its single-image filters was preservation of dc, i.e., of local mean
values. The dual hybrid is analogous to the interpolating hybrid described above, with the important new
feature that errors at v = 1/2 are also perfectly suppressed, an impossibility with interpolation. This
particular dual hybrid was constrained to preserve the peak amplitude of a small Gaussian target
(corresponding to a = 1 in the Section 7 analysis). The dual LF-4 and hybrid yield smaller rms errors
than even LF-10 (Fig. 25) by factors of 5.9 and 12.1, respectively.

Because the second image is now also filtered before subtraction, the difference image is no longer
a measure of interpolation error. Dual filtering methods relinquish the goal of interpolation for the sake
of maximizing a signal-to-clutter ratio. These ideas are explored further in a companion paper [18].

9. SUMMARY

This report provides tools for evaluating and designing interpolation and resampling methods. It
begins by deriving a generalized version of Parseval's Theorem. The theorem has strong and weak forms,
depending on whether the image is over- or undersampled. An extension of the derivation produces a
second theorem that replaces the sampled image with an error image. Strong and weak versions of this
theorem are also proved, but now the strong version applies whenever the image-not the error image-is
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Fig. 26 - Error spectra for dual filtering methods

oversampled. However, even for undersampled imagery, the weak version provides a valuable tool for
predicting interpolation errors in an average sense.

The proofs of these theorems lead to the derivation of a fundamental formula for interpolation error,
which is expressible as an error spectrum. This can be written as a product of the image power sp, rtrum
and an error factor that depends only on the interpolation kernel. Forms for the error factor are dei ved
that are useful for interpolators that are of finite extent either in space or in frequency.

An equation for the minimum-squared-error interpolator is derived and solved for various model
image spectra: constant inband, Lorentzian, power law, and Gaussian. When image spectra are modelled
with analytic forms extending over infinite frequency range, the optimal solutions often result in residual
error spectra concentrated around the Nyquist limit. Such solutions are sometimes inferior to polynomial
methods when applied to Nyquist-truncated versions of the model spectra.

Methods are described for customizing the performance of an N-point interpolator when the precise
form of the image spectrum is unknown. Performance error can be made zero at selected frequencies,
the number of which is limited only by the order of the interpolator. Such hybrid methods can also be
designed to keep the error small in selected regions of the spectrum by concentrating many zeros of the
error factor into a small range, such as for LF-N, in which all zeros are collapsed to dc. The hybrids are
also valuable suboptimal methods when the form of the ideal interpolator is cumbersome, as often
happens with image power spectra that are truncated forms of analytic functions.
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Appendix

DERIVATION OF THE COMB TRANSFORM

The fundamental theorem of Fourier series can be written as

(v) = e-2''c, e [-1/2, 1/2] (Al)

where

1 /2 (A2)c. f e 'T" (,)dq, (2
_I/2

for any reasonably well-behaved function [Al]. Therefore, formally defining

k(v) = e -2iin, (A3)

Eqs. (Al) and (A2) can be combined into

1/= ( - qkt~n (A4)

Because Eq. (A4) holds for (rather) arbitrary J:
(a) k is by definition the Dirac delta function on the interval [- 1/2, 1/2].

However, it is obvious from Eq. (A3) that:
(b) k is periodic with period one.

Together, (a) and (b) mean that k must be the sum of displaced delta functions. That is:

k()= 6( - n). (AS)

The right-hand side of Eq. (A5) is the definition of the comb, so that Eq. (A3) becomes

e - 2 i " = comb(,). (A6)

However, the left-hand side of Eq. (A6) is just the Fourier transform of the sum of displaced delta
functions:

(x - n) - comb(x). (A7)
n

That is, comb(,) and comb(x) are Fourier transform pairs, as claimed in Eq. (9). For an alternative proof
that treats delta functions as the limit of Gaussians, see Ref. A2.
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